Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# catena-Poly[[[aquaformato(1,10-phenanthroline)cobalt(II)]-µ-formato] monohydrate]

## Bin Zhou,<sup>a</sup> Peng-Wu Zheng<sup>a</sup>\* and Ke-Yue Liu<sup>b</sup>

<sup>a</sup>School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China, and <sup>b</sup>Medical College, Jiujiang University, Jiujiang 332000, People's Republic of China Correspondence e-mail: tju\_zhoubin@163.com

Received 29 August 2007; accepted 25 September 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.043; wR factor = 0.100; data-to-parameter ratio = 12.3.

In the polymeric title compound,  $\{[Co(CHO_2)_2(C_{12}H_8N_2) (H_2O)$ ]· $H_2O$ }<sub>n</sub>, the cobalt ion is coordinated by two N atoms from one chelating 1,10-phenanthroline ligand, three formate O atoms and one water O atom, giving a cis-CoN<sub>2</sub>O<sub>4</sub> octahedral geometry. Pairs of formate anions bridge the metal atoms into a chain. A network of O-H···O hydrogen bonds helps to establish the packing.

#### **Related literature**

For background, see: Peng et al. (2006); Cui et al. (2007).



#### **Experimental**

#### Crystal data

[Co(CHO<sub>2</sub>)<sub>2</sub>(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)(H<sub>2</sub>O)]·H<sub>2</sub>O  $M_r = 365.20$ Orthorhombic, Pna21 a = 18.908 (4) Å b = 12.014 (2) Å c = 6.3685 (13) Å

V = 1446.7 (5) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 1.22 \text{ mm}^{-1}$ T = 113 (2) K  $0.20\,\times\,0.18\,\times\,0.08~\mathrm{mm}$ 

# metal-organic compounds

 $R_{\rm int} = 0.085$ 

8676 measured reflections

2562 independent reflections

2153 reflections with  $I > 2\sigma(I)$ 

#### Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)  $T_{\min} = 0.792, T_{\max} = 0.909$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.043$                    | H-atom parameters constrained                                                        |
|----------------------------------------------------|--------------------------------------------------------------------------------------|
| $wR(F^2) = 0.100$                                  | $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$                            |
| S = 0.86                                           | $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$                           |
| 2562 reflections                                   | Absolute structure: Flack (1983),                                                    |
| 209 parameters                                     | 1152 Friedel pairs                                                                   |
| 7 restraints                                       | Flack parameter: 0.00 (3)                                                            |
| 2562 reflections<br>209 parameters<br>7 restraints | Absolute structure: Flack (1983),<br>1152 Friedel pairs<br>Flack parameter: 0.00 (3) |

#### Table 1 Selected bond lengths (Å).

| Co1-O1              | 2.060 (3) | Co1-N1 | 2.107 (4) |
|---------------------|-----------|--------|-----------|
| Co1-O5              | 2.082 (3) | Co1-O3 | 2.129 (3) |
| Co1-O4 <sup>i</sup> | 2.086 (3) | Co1-N2 | 2.146 (4) |

Symmetry code: (i)  $-x + 1, -y + 1, z - \frac{1}{2}$ .

#### Table 2 Hydrogen-bond geometry (Å, °).

| $D = H \cdots A$        | D-H       | H <i>A</i> | $D \cdots A$ | $D = H \cdots A$ |
|-------------------------|-----------|------------|--------------|------------------|
|                         | $D = \Pi$ | 11         | D            | D-II···/I        |
| $O5-H5A\cdots O6^{ii}$  | 0.85      | 1.83       | 2.644 (4)    | 159              |
| $O6-H6A\cdots O2^{iii}$ | 0.85      | 1.93       | 2.734 (4)    | 156              |
| $O5-H5B\cdots O4$       | 0.85      | 1.82       | 2.653 (4)    | 167              |
| $O6-H6B\cdots O2$       | 0.85      | 1.90       | 2.755 (5)    | 178              |

Symmetry codes: (ii) x, y, z + 1; (iii)  $-x + 1, -y, z - \frac{1}{2}$ .

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2527).

#### References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Cui, J.-Z., Yi, Y.-J., Zhang, H., Gao, H.-L. & Wang, H.-T. (2007). Acta Cryst. E63, m587-m588.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Peng, Y. F., Liu, T. B., Yang, X. H. & Li, B. L. (2006). Chin. J. Struct. Chem. 7, 793-796.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2635 [doi:10.1107/81600536807047162]

## catena-Poly[[[aquaformato(1,10-phenanthroline)cobalt(II)]-µ-formato] monohydrate]

## B. Zhou, P.-W. Zheng and K.-Y. Liu

#### Comment

Recently, formate complexes have received attention in terms of their structure, magnetism and biological activity (Peng et al., 2006; Cui et al., 2007).

We report here the structure (Fig. 1) of the polymeric title compound, (I), in which two formate anions are bridging between Co centres. The cobalt coordination is completed by a monodentate-O terminal formate ion, an N,*N*-bidentate 1,10-phenanthroline molecule and a water molecule. This results in a distorted *cis*-CoN<sub>2</sub>O<sub>4</sub> octahedral coordination gemoetry (Table 1).

The bridging formate anions lead to a one-dimensional polymeric chain. The packing for (I) is consolidated by a network of O—H…O hydrogen bonds (Table 2).

### **Experimental**

The title compound was prepared by adding 5 ml of aqueous solution of cobalt nitrate (0.146 g, 0.5 mmol), to 10 ml of ethanol solution of 1,10-phenanthroline (0.099 g, 0.5 mmol), after which sodium formate (0.232 g, 4 mmol) was added and was refluexed for 2 h. The resulting solution was filtrated and the filtrate was kept at room temperature and orange blocks of (I) appeared after a week.

### Refinement

The H atoms were positioned geometrically (C—H = 0.96–0.97 Å, O—H = 0.85 Å) and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(carrier)$ .

#### **Figures**



Fig. 1. A view of a fragement of the polymeric structure of (I). Displacement ellopsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radius. Atoms with a suffix A are at the symmetry position (1 - x, 1 - y, z - 1/2).

### catena-Poly[[[aquaformato(1,10-phenanthroline)cobalt(II)]-µ-formato] monohydrate]

Crystal data  $[Co(CHO_2)_2(C_{12}H_8N_2)(H_2O)]$ ·H<sub>2</sub>O  $M_r = 365.20$ 

 $D_{\rm x} = 1.677 \text{ Mg m}^{-3}$ Mo *K* $\alpha$  radiation

| Orthorhombic, Pna21          |
|------------------------------|
| <i>a</i> = 18.908 (4) Å      |
| <i>b</i> = 12.014 (2) Å      |
| c = 6.3685 (13)  Å           |
| $V = 1446.7 (5) \text{ Å}^3$ |
| Z = 4                        |
| $F_{000} = 748$              |

# Data collection Rigaku Saturn

| $\lambda = 0.71073 \text{ Å}$             |
|-------------------------------------------|
| Cell parameters from 3127 reflections     |
| $\theta = 2.0-27.9^{\circ}$               |
| $\mu = 1.22 \text{ mm}^{-1}$              |
| T = 113 (2)  K                            |
| Block, orange                             |
| $0.20 \times 0.18 \times 0.08 \text{ mm}$ |

| Rigaku Saturn<br>diffractometer                                       | 2562 independent reflections           |
|-----------------------------------------------------------------------|----------------------------------------|
| Radiation source: rotating anode                                      | 2153 reflections with $I > 2\sigma(I)$ |
| Monochromator: confocal                                               | $R_{\rm int} = 0.085$                  |
| T = 113(2)  K                                                         | $\theta_{\text{max}} = 25.0^{\circ}$   |
| ω scans                                                               | $\theta_{\min} = 2.7^{\circ}$          |
| Absorption correction: multi-scan<br>(CrystalClear; Rigaku/MSC, 2005) | $h = -22 \rightarrow 22$               |
| $T_{\min} = 0.792, \ T_{\max} = 0.909$                                | $k = -11 \rightarrow 14$               |
| 8676 measured reflections                                             | $l = -7 \rightarrow 7$                 |
|                                                                       |                                        |

#### Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from neighbouring sites                  |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H-atom parameters constrained                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.043$                                | $w = 1/[\sigma^2(F_o^2) + (0.0651P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.100$                                              | $(\Delta/\sigma)_{\rm max} = 0.001$                                       |
| <i>S</i> = 0.86                                                | $\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$                       |
| 2562 reflections                                               | $\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$                    |
| 209 parameters                                                 | Extinction correction: none                                               |
| 7 restraints                                                   | Absolute structure: Flack (1983), 1152 Friedel pairs                      |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.00 (3)                                                 |

Secondary atom site location: difference Fourier map

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | у           | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|-------------|--------------|-------------------------------|
| Col | 0.58489 (2)  | 0.37977 (4) | 0.81148 (10) | 0.01363 (16)                  |
| 01  | 0.57437 (16) | 0.2373 (2)  | 0.6343 (5)   | 0.0212 (8)                    |
| 02  | 0.56006 (18) | 0.0562 (2)  | 0.5806 (6)   | 0.0273 (8)                    |
| O3  | 0.59367 (14) | 0.5412 (2)  | 0.9471 (5)   | 0.0177 (7)                    |
| O4  | 0.49223 (15) | 0.5437 (2)  | 1.1272 (5)   | 0.0186 (7)                    |
| O5  | 0.50825 (16) | 0.3308 (2)  | 1.0273 (5)   | 0.0209 (8)                    |
| H5A | 0.5086       | 0.2784      | 1.1163       | 0.025*                        |
| H5B | 0.4983       | 0.3956      | 1.0733       | 0.025*                        |
| N1  | 0.66885 (18) | 0.4293 (3)  | 0.6150 (6)   | 0.0136 (8)                    |
| N2  | 0.67416 (19) | 0.3116 (3)  | 0.9751 (6)   | 0.0173 (8)                    |
| C1  | 0.6659 (3)   | 0.4838 (4)  | 0.4355 (7)   | 0.0208 (10)                   |
| H1  | 0.6218       | 0.5067      | 0.3880       | 0.025*                        |
| C2  | 0.7245 (2)   | 0.5094 (3)  | 0.3127 (10)  | 0.0240 (9)                    |
| H2  | 0.7193       | 0.5481      | 0.1871       | 0.029*                        |
| C3  | 0.7901 (2)   | 0.4762 (4)  | 0.3807 (8)   | 0.0253 (12)                   |
| H3  | 0.8301       | 0.4913      | 0.3007       | 0.030*                        |
| C4  | 0.7962 (2)   | 0.4191 (4)  | 0.5731 (8)   | 0.0214 (11)                   |
| C5  | 0.8627 (3)   | 0.3794 (4)  | 0.6570 (9)   | 0.0323 (13)                   |
| H5  | 0.9045       | 0.3951      | 0.5862       | 0.039*                        |
| C6  | 0.8646 (2)   | 0.3205 (4)  | 0.8352 (10)  | 0.0319 (13)                   |
| H6  | 0.9080       | 0.2957      | 0.8852       | 0.038*                        |
| C7  | 0.8015 (2)   | 0.2944 (4)  | 0.9519 (8)   | 0.0235 (11)                   |
| C8  | 0.8010 (3)   | 0.2328 (4)  | 1.1383 (8)   | 0.0268 (12)                   |
| H8  | 0.8432       | 0.2066      | 1.1942       | 0.032*                        |
| C9  | 0.7387 (3)   | 0.2112 (4)  | 1.2382 (8)   | 0.0292 (13)                   |
| Н9  | 0.7382       | 0.1696      | 1.3614       | 0.035*                        |
| C10 | 0.6751 (2)   | 0.2524 (3)  | 1.1525 (8)   | 0.0226 (11)                   |
| H10 | 0.6327       | 0.2380      | 1.2214       | 0.027*                        |
| C11 | 0.7362 (2)   | 0.3326 (4)  | 0.8765 (7)   | 0.0181 (10)                   |
| C12 | 0.7338 (2)   | 0.3958 (4)  | 0.6843 (8)   | 0.0183 (11)                   |
| C13 | 0.5675 (2)   | 0.1395 (4)  | 0.6949 (8)   | 0.0225 (11)                   |
| H13 | 0.5679       | 0.1275      | 0.8391       | 0.027*                        |
| C14 | 0.5454 (2)   | 0.5899 (4)  | 1.0437 (7)   | 0.0169 (10)                   |
| H14 | 0.5488       | 0.6669      | 1.0554       | 0.020*                        |
| O6  | 0.49393 (19) | 0.1397 (2)  | 0.2288 (6)   | 0.0332 (9)                    |
| H6A | 0.4752       | 0.0902      | 0.1500       | 0.040*                        |
| H6B | 0.5149       | 0.1157      | 0.3384       | 0.040*                        |
|     |              |             |              |                               |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$   | $U^{13}$    | $U^{23}$   |
|-----|------------|------------|------------|------------|-------------|------------|
| Col | 0.0135 (3) | 0.0126 (3) | 0.0147 (3) | 0.0009 (2) | -0.0011 (3) | 0.0004 (3) |

# supplementary materials

| 01  | 0.0298 (19) | 0.0150 (18) | 0.0187 (19) | 0.0002 (13)  | -0.0043 (14) | 0.0023 (15)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| O2  | 0.044 (2)   | 0.0148 (17) | 0.0235 (18) | -0.0011 (15) | -0.0075 (16) | -0.0029 (16) |
| O3  | 0.0163 (16) | 0.0160 (17) | 0.0207 (18) | 0.0009 (12)  | 0.0034 (13)  | 0.0012 (15)  |
| O4  | 0.0172 (16) | 0.0181 (16) | 0.0203 (18) | -0.0024 (13) | 0.0056 (14)  | 0.0011 (14)  |
| O5  | 0.0251 (17) | 0.0109 (16) | 0.027 (2)   | 0.0023 (12)  | 0.0103 (15)  | 0.0023 (14)  |
| N1  | 0.016 (2)   | 0.0094 (18) | 0.016 (2)   | 0.0001 (14)  | -0.0008 (16) | -0.0020 (17) |
| N2  | 0.018 (2)   | 0.0143 (19) | 0.020 (2)   | 0.0029 (15)  | -0.0013 (16) | -0.0040 (18) |
| C1  | 0.029 (3)   | 0.018 (2)   | 0.016 (2)   | 0.0018 (19)  | 0.002 (2)    | -0.002 (2)   |
| C2  | 0.035 (2)   | 0.017 (2)   | 0.020 (2)   | -0.0100 (17) | 0.005 (3)    | -0.003 (3)   |
| C3  | 0.029 (3)   | 0.017 (3)   | 0.030 (3)   | -0.008 (2)   | 0.014 (2)    | -0.011 (2)   |
| C4  | 0.019 (3)   | 0.018 (2)   | 0.027 (3)   | -0.0049 (18) | 0.006 (2)    | -0.008 (2)   |
| C5  | 0.011 (3)   | 0.046 (3)   | 0.041 (3)   | -0.002 (2)   | 0.005 (2)    | -0.020 (3)   |
| C6  | 0.018 (2)   | 0.038 (3)   | 0.039 (4)   | 0.0110 (19)  | -0.012 (3)   | -0.021 (3)   |
| C7  | 0.022 (3)   | 0.023 (3)   | 0.026 (3)   | 0.005 (2)    | -0.007 (2)   | -0.009 (2)   |
| C8  | 0.032 (3)   | 0.019 (3)   | 0.030 (3)   | 0.009 (2)    | -0.014 (2)   | -0.011 (2)   |
| C9  | 0.039 (3)   | 0.030 (3)   | 0.019 (2)   | 0.005 (2)    | -0.014 (2)   | -0.006 (2)   |
| C10 | 0.032 (3)   | 0.012 (2)   | 0.024 (3)   | 0.0009 (19)  | -0.006 (2)   | 0.000 (2)    |
| C11 | 0.021 (2)   | 0.014 (2)   | 0.019 (3)   | 0.0056 (18)  | -0.0033 (18) | -0.0070 (19) |
| C12 | 0.016 (2)   | 0.016 (2)   | 0.023 (3)   | 0.0020 (18)  | 0.000 (2)    | -0.009 (2)   |
| C13 | 0.022 (3)   | 0.025 (3)   | 0.020 (3)   | 0.005 (2)    | 0.002 (2)    | 0.000 (2)    |
| C14 | 0.015 (2)   | 0.015 (2)   | 0.021 (3)   | 0.0028 (18)  | -0.0028 (19) | -0.001 (2)   |
| O6  | 0.052 (2)   | 0.0204 (18) | 0.027 (2)   | -0.0118 (15) | -0.0135 (17) | 0.0055 (16)  |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| Co1—O1                 | 2.060 (3)  | C3—C4     | 1.409 (7) |
|------------------------|------------|-----------|-----------|
| Co1—O5                 | 2.082 (3)  | С3—Н3     | 0.9300    |
| Co1—O4 <sup>i</sup>    | 2.086 (3)  | C4—C12    | 1.404 (6) |
| Co1—N1                 | 2.107 (4)  | C4—C5     | 1.446 (7) |
| Co1—O3                 | 2.129 (3)  | C5—C6     | 1.338 (8) |
| Co1—N2                 | 2.146 (4)  | С5—Н5     | 0.9300    |
| O1—C13                 | 1.244 (5)  | C6—C7     | 1.440 (7) |
| O2—C13                 | 1.245 (5)  | С6—Н6     | 0.9300    |
| O3—C14                 | 1.246 (5)  | C7—C8     | 1.398 (7) |
| O4—C14                 | 1.266 (5)  | C7—C11    | 1.402 (6) |
| O4—Co1 <sup>ii</sup>   | 2.086 (3)  | C8—C9     | 1.363 (7) |
| O5—H5A                 | 0.8473     | С8—Н8     | 0.9300    |
| O5—H5B                 | 0.8533     | C9—C10    | 1.411 (6) |
| N1—C1                  | 1.319 (6)  | С9—Н9     | 0.9300    |
| N1—C12                 | 1.366 (6)  | С10—Н10   | 0.9300    |
| N2—C10                 | 1.335 (6)  | C11—C12   | 1.441 (7) |
| N2—C11                 | 1.355 (6)  | С13—Н13   | 0.9300    |
| C1—C2                  | 1.389 (6)  | C14—H14   | 0.9300    |
| С1—Н1                  | 0.9300     | O6—H6A    | 0.8544    |
| C2—C3                  | 1.375 (6)  | O6—H6B    | 0.8532    |
| С2—Н2                  | 0.9300     |           |           |
| O1—Co1—O5              | 93.42 (12) | С4—С3—Н3  | 120.4     |
| O1—Co1—O4 <sup>i</sup> | 89.45 (11) | C12—C4—C3 | 117.9 (4) |

| O5—Co1—O4 <sup>i</sup>      | 90.54 (12)  | C12—C4—C5      | 118.5 (5)  |
|-----------------------------|-------------|----------------|------------|
| O1—Co1—N1                   | 88.97 (13)  | C3—C4—C5       | 123.5 (4)  |
| O5-Co1-N1                   | 174.97 (14) | C6—C5—C4       | 120.7 (5)  |
| O4 <sup>i</sup> —Co1—N1     | 93.91 (13)  | С6—С5—Н5       | 119.6      |
| O1—Co1—O3                   | 170.57 (13) | С4—С5—Н5       | 119.6      |
| O5—Co1—O3                   | 92.52 (12)  | C5—C6—C7       | 122.1 (4)  |
| O4 <sup>i</sup> —Co1—O3     | 83.18 (11)  | С5—С6—Н6       | 119.0      |
| N1—Co1—O3                   | 85.70 (12)  | С7—С6—Н6       | 119.0      |
| O1—Co1—N2                   | 91.42 (13)  | C8—C7—C11      | 117.2 (4)  |
| O5—Co1—N2                   | 96.83 (14)  | C8—C7—C6       | 124.0 (4)  |
| O4 <sup>i</sup> —Co1—N2     | 172.51 (14) | С11—С7—С6      | 118.7 (5)  |
| N1—Co1—N2                   | 78.67 (13)  | C9—C8—C7       | 120.2 (4)  |
| O3—Co1—N2                   | 95.14 (13)  | С9—С8—Н8       | 119.9      |
| C13—O1—Co1                  | 128.7 (3)   | С7—С8—Н8       | 119.9      |
| C14—O3—Co1                  | 124.8 (3)   | C8—C9—C10      | 119.3 (5)  |
| C14—O4—Co1 <sup>ii</sup>    | 126.8 (3)   | С8—С9—Н9       | 120.4      |
| Co1—O5—H5A                  | 130.2       | С10—С9—Н9      | 120.4      |
| Co1—O5—H5B                  | 97.0        | N2—C10—C9      | 121.7 (5)  |
| H5A—O5—H5B                  | 116.8       | N2-C10-H10     | 119.1      |
| C1—N1—C12                   | 117.6 (4)   | С9—С10—Н10     | 119.1      |
| C1—N1—Co1                   | 128.6 (3)   | N2—C11—C7      | 122.9 (4)  |
| C12—N1—Co1                  | 113.7 (3)   | N2-C11-C12     | 117.7 (4)  |
| C10—N2—C11                  | 118.7 (4)   | C7—C11—C12     | 119.4 (4)  |
| C10—N2—Co1                  | 128.7 (3)   | N1—C12—C4      | 122.3 (5)  |
| C11—N2—Co1                  | 112.7 (3)   | N1—C12—C11     | 117.2 (4)  |
| N1—C1—C2                    | 124.4 (5)   | C4—C12—C11     | 120.5 (4)  |
| N1—C1—H1                    | 117.8       | 01—C13—O2      | 126.1 (5)  |
| C2—C1—H1                    | 117.8       | O1—C13—H13     | 116.9      |
| C3—C2—C1                    | 118.5 (5)   | O2—C13—H13     | 116.9      |
| C3—C2—H2                    | 120.7       | O3—C14—O4      | 125.7 (4)  |
| C1—C2—H2                    | 120.7       | O3—C14—H14     | 117.2      |
| C2—C3—C4                    | 119.3 (5)   | 04—C14—H14     | 117.2      |
| С2—С3—Н3                    | 120.4       | Н6А—О6—Н6В     | 116.0      |
| O5—Co1—O1—C13               | -41.7 (4)   | C4—C5—C6—C7    | -0.3 (7)   |
| O4 <sup>1</sup> —Co1—O1—C13 | -132.2 (4)  | C5—C6—C7—C8    | 179.8 (5)  |
| N1—Co1—O1—C13               | 133.9 (4)   | C5—C6—C7—C11   | -0.4 (7)   |
| N2—Co1—O1—C13               | 55.3 (4)    | C11—C7—C8—C9   | 0.6 (7)    |
| O5—Co1—O3—C14               | -27.5 (3)   | C6—C7—C8—C9    | -179.6 (4) |
| O4 <sup>1</sup> —Co1—O3—C14 | 62.8 (3)    | C7—C8—C9—C10   | -0.6 (7)   |
| N1—Co1—O3—C14               | 157.2 (4)   | C11—N2—C10—C9  | -0.3 (6)   |
| N2—Co1—O3—C14               | -124.6 (3)  | Co1—N2—C10—C9  | 178.6 (3)  |
| 01—Co1—N1—C1                | 86.0 (4)    | C8—C9—C10—N2   | 0.5 (7)    |
| O4 <sup>1</sup> —Co1—N1—C1  | -3.4 (4)    | C10—N2—C11—C7  | 0.4 (6)    |
| O3—Co1—N1—C1                | -86.2 (4)   | Co1—N2—C11—C7  | -178.7 (3) |
| N2-Co1-N1-C1                | 177.6 (4)   | C10—N2—C11—C12 | 179.5 (4)  |
| O1—Co1—N1—C12               | -91.7 (3)   | Co1—N2—C11—C12 | 0.4 (5)    |
| O4 <sup>i</sup> —Co1—N1—C12 | 179.0 (3)   | C8—C7—C11—N2   | -0.5 (7)   |

# supplementary materials

| O3—Co1—N1—C12 | 96.1 (3)   | C6—C7—C11—N2                 | 179.7 (4)  |
|---------------|------------|------------------------------|------------|
| N2-Co1-N1-C12 | 0.0 (3)    | C8—C7—C11—C12                | -179.6 (4) |
| O1—Co1—N2—C10 | -90.5 (4)  | C6—C7—C11—C12                | 0.6 (6)    |
| O5-Co1-N2-C10 | 3.1 (4)    | C1—N1—C12—C4                 | 1.0 (6)    |
| N1-Co1-N2-C10 | -179.2 (4) | Co1—N1—C12—C4                | 178.9 (3)  |
| O3—Co1—N2—C10 | 96.2 (4)   | C1-N1-C12-C11                | -177.7 (4) |
| O1-Co1-N2-C11 | 88.4 (3)   | Co1—N1—C12—C11               | 0.2 (5)    |
| O5-Co1-N2-C11 | -178.0 (3) | C3—C4—C12—N1                 | -1.9 (6)   |
| N1—Co1—N2—C11 | -0.2 (3)   | C5-C4-C12-N1                 | -179.4 (4) |
| O3—Co1—N2—C11 | -84.8 (3)  | C3—C4—C12—C11                | 176.8 (4)  |
| C12—N1—C1—C2  | 0.0 (6)    | C5-C4-C12-C11                | -0.7 (6)   |
| Co1—N1—C1—C2  | -177.6 (3) | N2-C11-C12-N1                | -0.4 (6)   |
| N1—C1—C2—C3   | 0.0 (7)    | C7-C11-C12-N1                | 178.7 (4)  |
| C1—C2—C3—C4   | -0.9 (7)   | N2-C11-C12-C4                | -179.2 (4) |
| C2-C3-C4-C12  | 1.8 (6)    | C7—C11—C12—C4                | 0.0 (7)    |
| C2—C3—C4—C5   | 179.2 (4)  | Co1-01-C13-02                | 178.7 (3)  |
| C12—C4—C5—C6  | 0.9 (7)    | Co1—O3—C14—O4                | 20.8 (6)   |
| C3—C4—C5—C6   | -176.4 (5) | Co1 <sup>ii</sup> —O4—C14—O3 | 174.4 (3)  |
|               |            |                              |            |

Symmetry codes: (i) -*x*+1, -*y*+1, *z*-1/2; (ii) -*x*+1, -*y*+1, *z*+1/2.

Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|----------------------------|-------------|--------------|--------------|----------------------------------------------------------------------------|
| O5—H5A···O6 <sup>iii</sup> | 0.85        | 1.83         | 2.644 (4)    | 159                                                                        |
| O6—H6A···O2 <sup>iv</sup>  | 0.85        | 1.93         | 2.734 (4)    | 156                                                                        |
| O5—H5B…O4                  | 0.85        | 1.82         | 2.653 (4)    | 167                                                                        |
| O6—H6B…O2                  | 0.85        | 1.90         | 2.755 (5)    | 178                                                                        |
|                            |             |              |              |                                                                            |

Symmetry codes: (iii) *x*, *y*, *z*+1; (iv) –*x*+1, –*y*, *z*–1/2.



Fig. 1